Справочник функций

Ваш аккаунт

Войти через: 
Забыли пароль?
Регистрация
Информацию о новых материалах можно получать и без регистрации:

Последние темы форума

Показать новые сообщения »

Почтовая рассылка

Подписчиков: 11642
Последний выпуск: 19.06.2015

Моделирование при сжатии текстовых данных - ДАЛЬHЕЙШИЕ ИССЛЕДОВАHИЯ.

Существуют 3 направления исследований в данной области: повышение эффективности сжатия, убыстрение работы алгоритма и осуществление сжатия на основании новой системы констекстов.

Сейчас лучшие схемы достигают сжатия в 2.3 - 2.5 битов/символ для английского текста. Показатель иногда может быть немного улучшен за счет использования больших объемов памяти, но сообщений о преодолении рубежа в 2 бита/символ еще не было. Обычные люди достигали результата в 1.3 бита/символ при предсказании символов в английском тексте [21]. Хотя обычно это принимается за нижнюю границу, но теоретических причин верить, что хорошо тренированные люди или системы ЭВМ не достигнут большего, не существует. В любом случае, несомненно, существует много возможностей для улучшения алгоритмов сжатия.

Одним направлением для исследований является подгонка схем сжатия к отечественным языкам. Сегодняшние системы работают полностью на лексическом уровне. Использование больших словарей с синтаксической и семантической информацией может позволить машинам получить преимущество от имеющейся в тексте высокоуpовневой связности. Однако, необходимо иметь в виду, что очень большое количество слов обычного английского текста в обычном английском словаpе может быть не найдено. Например, Уолкер и Эмслер[107] проверили 8 миллионов слов из New York Times News Service для Webster's Seventh New Collegiate Dictionary[65] и обнаружили, что в словаpе отсутствовало почти 2/3 (64%) слов (они подсчитали, что около 1/4 из них - грамматические формы слов, еще 1/4 - собственные существительные, 1/6 - слова, написанные через дефис, 1/12 - напечатаны с орфографическими ошибками, а оставшуюся четверть составляют возникшие уже после выпуска словаря неологизмы). Большинство словарей не содеpжат имен людей, названий мест, институтов, торговых марок и т.д., хотя они составляют основную часть почти всех документов. Поэтому, специальные алгоритмы сжатия, взятые в рассчете на лингвистическую информацию более высокого уровня, будут несомненно зависеть от системной сферы. Вероятно, что поиски методов улучшения характеристик сжатия в данном направлении будут объединяться с исследованиями в области контекстуального анализа по таким проблемам как извлечение ключевых слов и автоматическое абстрагирование.

Второй подход диаметрально противоположен описанному выше наукоемкому направлению, и состоит в поддержании полной адаптивности системы и поиске улучшений в имеющихся алгоритмах. Необходимы лучшие пути организации контекстов и словарей. Например, еще не обнаружен пригодный метод постстроения моделей состояний; показанный метод DMC - лишь форма контекстно-ограниченной модели[8]. Тонкости роста этих СД вероятно значительно влияют на сжатие, но, несмотря на статью Уильямса [110], этот вопрос еще не был исследован систематично. Дpугой стоящей темой для исследований являются методы выделения кодов уходов в частично соответствующих контекстуальных моделях. В итоге, пpеобpазование систем, определяемых состояниями, таких как скрытые модели Маркова[77], может вдохнуть новую жизнь в модели состояний сжатия текстов. Например, алгоритм Баума-Уэлча определения скрытых моделей Маркова [4] в последнее время был вновь открыт в области распознавания речи [60]. Он может быть успешно применен для сжатия текстов, равно как и для техники глобальной оптимизации, такой как моделирование обжига[25]. Недостаток этих методов состоит в их значительных временных затратах, что позволяет сейчас эксплуатировать довольно небольшие модели с десятками и сотнями, а не тысячами и более состояний.

Поиски более быстрых алгоритмов, сильно влияющих на развитие методов сжатия текстов, будут несомненно продолжены в будущем. Постоянный компромисс между стоимостями памяти и вычислений будет стимулировать дальнейшую работу над более сложными СД, требующими больших объемов памяти, но ускоряющих доступ к хранимой информации. Применение архитектуры RISC, например в [43], разными путями воздействует на баланс между хранением и выполнением. Будет развиваться аппаратура, например, исследователи экспериментируют с арифметическим кодированием на микросхеме, когда как Гонзалес-Смит и Сторер [34] разработали для сжатия Зива-Лемпела параллельные алгоритмы поиска. В общем, увеличение вариантов аппаратных реализаций будет стимулировать и разнообразить исследования по улучшению использующих их алгоритмов.

Последняя область на будущее - это разработка и реализация новых систем, включающих сжатие текстов. Существует идея объединения в единую систему ряда распространенных пpогpамм pазных областей применения, включая текст-процессор MaxWrite(7)[117], цифровой факсимильный аппаpат [42], сетевую почту и новости (например, UNIX "net-news") и архивацию файлов (например, программы ARC и PKARC для IBM PC(8), которые часто применяются для pаспpеделяемого ПО из электронных бюллютеней). Для увеличения скорости и сокращения стоимости большинство этих систем используют удивительно простые методы сжатия. Все они представляют собой потенциальные сферы применения для более сложных методов моделирования.

Люди часто размышляют над объединением адаптированного сжатия с дисковым контроллером для сокращения использования диска. Это поднимает интересные системные проблемы, частично в сглаживании взрывного характера вывода большинства алгоритмов сжатия, но в основном в согласовывании случайного характера доступа к дисковым блокам с требованиями адаптации к разным стилям данных. Сжатие имеет значительные преимущества для конечного движения - некоторые высокоскоростные модемы (например, Racal-Vadic's Scotsman) и конечные эмуляторы (например, [3]) уже имеют адаптивные алгоритмы. В будущем полностью цифровые телефонные сети радикально изменят характер конечного движения и, вообще, сферу локальных сетей. Эффективность сжатия трудно оценить, но эти усовершенствования определенно будут давать преимущество в скорости реализации.

Еще одной сферой применения является шифрование и защита данных [113]. Сжатие придает хранимым и передаваемым сообщениям некоторую степень секретности. Во-первых, оно защищает их от случайного наблюдателя. Во-вторых, посредством удаления избыточности оно не дает возможности криптоаналитику установить присущий естественному языку статистичекий порядок. В-третьих, что самое важное, модель действует как очень большой ключ, без которого расшифровка невозможна. Применение адаптивной модели означает, что ключ зависит от всего текста, переданного системе кодирования/раскодирования во время ее инициализации. Также в качестве ключа может быть использован некоторый префикс сжатых данных, опpеделяющий модель для дальнейшего pаскодиpования[47].

Сжатие текстов является настолько же нужной областью исследований как и 40 лет назад, когда ресурсы ЭВМ были скудны. Его пpименение продолжает изменяться вместе с улучшением технологии, постоянно увеличивая выигрыш за счет машинного времени, скорости передачи данных, первичного и вторичного хранения.

Назад | Оглавление | Вперед

Оставить комментарий

Комментарий:
можно использовать BB-коды
Максимальная длина комментария - 4000 символов.
 
Реклама на сайте | Обмен ссылками | Ссылки | Экспорт (RSS) | Контакты
Добавить статью | Добавить исходник | Добавить хостинг-провайдера | Добавить сайт в каталог