CodeNet / Приложения / Алгоритмы / Сортировка / Сортировка и поиск: Рецептурный справочник
Хеш-таблицы
Один из наиболее эффективных способов реализации словаря - хеш-таблица. Среднее время поиска элемента в ней есть O(1), время для наихудшего случая - O(n). Прекрасное изложение хеширования можно найти в работах Кормена[1990] и Кнута[1998]. Чтобы читать статьи на эту тему, вам понадобится владеть соответствующей терминологией. Здесь описан метод, известный как связывание или открытое хеширование[3]. Другой метод, известный как замкнутое хеширование[3] или закрытая адресация[1], здесь не обсуждаются. Ну, как?
Теория
Хеш-таблица - это обычный массив с необычной адресацией, задаваемой хеш-функцией. Например, на hashTable рис. 3.1 - это массив из 8 элементов. Каждый элемент представляет собой указатель на линейный список, хранящий числа. Хеш-функция в этом примере просто делит ключ на 8 и использует остаток как индекс в таблице. Это дает нам числа от 0 до 7 Поскольку для адресации в hashTable нам и нужны числа от 0 до 7, алгоритм гарантирует допустимые значения индексов.

Рис. 3.1: Хеш-таблица
Чтобы вставить в таблицу новый элемент, мы хешируем ключ, чтобы определить список, в который его нужно добавить, затем вставляем элемент в начало этого списка. Например, чтобы добавить 11, мы делим 11 на 8 и получаем остаток 3. Таким образом, 11 следует разместить в списке, на начало которого указывает hashTable[3]. Чтобы найти число, мы его хешируем и проходим по соответствующему списку. Чтобы удалить число, мы находим его и удаляем элемент списка, его содержащий.
При добавлении элементов в хеш-таблицу выделяются куски динамической памяти, которые организуются в виде связанных списков, каждый из которых соответствует входу хеш-таблицы. Этот метод называется связыванием. Другой метод, в котором все элементы располагаются в самой хеш-таблице, известен как прямая или открытая адресация; его описание вы найдете в цитируемой литературе.
Если хеш-функция распределяет совокупность возможных ключей равномерно по множеству индексов, то хеширование эффективно разбивает множество ключей. Наихудший случай - когда все ключи хешируются в один индекс. При этом мы работаем с одним линейным списком, который и вынуждены последовательно сканировать каждый раз, когда что-нибудь делаем. Отсюда видно, как важна хорошая хеш-функция. Здесь мы рассмотрим лишь несколько из возможных подходов. При иллюстрации методов предполагается, что unsigned char располагается в 8 битах, unsigned short int - в 16, unsigned long int - в 32.
- Деление (размер таблицы hashTableSize - простое число). Этот метод использован в последнем примере. Хеширующее значение hashValue, изменяющееся от 0 до (hashTableSize - 1), равно остатку от деления ключа на размер хеш-таблицы. Вот как это может выглядеть:
- Мультипликативный метод (размер таблицы hashTableSize есть степень 2n). Значение key умножается на константу, затем от результата берется необходимое число битов. В качестве такой константы Кнут рекомендует золотое сечение (sqrt(5) - 1)/2 = 0.6180339887499. Пусть, например, мы работаем с байтами. Умножив золотое сечение на 28, получаем 158. Перемножим 8-битовый ключ и 158, получаем 16-битовое целое. Для таблицы длиной 25 в качестве хеширующего значения берем 5 младших битов младшего слова, содержащего такое произведение. Вот как можно реализовать этот метод:
- Аддитивный метод для строк переменной длины (размер таблицы равен 256). Для строк переменной длины вполне разумные результаты дает сложение по модулю 256. В этом случае результат hashValue заключен между 0 и 255.
- Исключающее ИЛИ для строк переменной длины (размер таблицы равен 256). Этот метод аналогичен аддитивному, но успешно различает схожие слова и анаграммы (аддитивный метод даст одно значение для XY и YX). Метод, как легко догадаться, заключается в том, что к элементам строки последовательно применяется операция "исключающее или". В нижеследующем алгоритме добавляется случайная компонента, чтобы еще улучшить результат.
- Исключающее ИЛИ для строк переменной длины (размер таблицы <= 65536). Если мы хешируем строку дважды, мы получим хеш-значение для таблицы любой длины до 65536. Когда строка хешируется во второй раз, к первому символу прибавляется 1. Получаемые два 8-битовых числа объединяются в одно 16-битовое.
Для успеха этого метода очень важен выбор подходящего значения hashTableSize. Если, например, hashTableSize равняется двум, то для четных ключей хеш-значения будут четными, для нечетных - нечетными. Ясно, что это нежелательно - ведь если все ключи окажутся четными, они попадут в один элемент таблицы. Аналогично, если все ключи окажутся четными, то hashTableSize, равное степени двух, попросту возьмет часть битов Key в качестве индекса. Чтобы получить более случайное распределение ключей, в качестве hashTableSize нужно брать простое число, не слишком близкое к степени двух.typedef int HashIndexType; HashIndexType Hash(int Key) { return Key % HashTableSize; }
Пусть, например, размер таблицы hashTableSize равен 1024 (210). Тогда нам достаточен 16-битный индекс и S будет присвоено значение 16 - 10 = 6. В итоге получаем:/* 8-bit index */ typedef unsigned char HashIndexType; static const HashIndexType K = 158; /* 16-bit index */ typedef unsigned short int HashIndexType; static const HashIndexType K = 40503; /* 32-bit index */ typedef unsigned long int HashIndexType; static const HashIndexType K = 2654435769; /* w=bitwidth(HashIndexType), size of table=2**m */ static const int S = w - m; HashIndexType HashValue = (HashIndexType)(K * Key) >> S;
typedef unsigned short int HashIndexType; HashIndexType Hash(int Key) { static const HashIndexType K = 40503; static const int S = 6; return (HashIndexType)(K * Key) >> S; }
typedef unsigned char HashIndexType; HashIndexType Hash(char *str) { HashIndexType h = 0; while (*str) h += *str++; return h; }
Здесь Rand8 - таблица из 256 восьмибитовых случайных чисел. Их точный порядок не критичен. Корни этого метода лежат в криптографии; он оказался вполне эффективным (Pearson [1990]).typedef unsigned char HashIndexType; unsigned char Rand8[256]; HashIndexType Hash(char *str) { unsigned char h = 0; while (*str) h = Rand8[h ^ *str++]; return h; }
typedef unsigned short int HashIndexType; unsigned char Rand8[256]; HashIndexType Hash(char *str) { HashIndexType h; unsigned char h1, h2; if (*str == 0) return 0; h1 = *str; h2 = *str + 1; str++; while (*str) { h1 = Rand8[h1 ^ *str]; h2 = Rand8[h2 ^ *str]; str++; } /* h is in range 0..65535 */ h = ((HashIndexType)h1 << 8)|(HashIndexType)h2; /* use division method to scale */ return h % HashTableSize }
Размер хеш-таблицы должен быть достаточно большим, чтобы в ней оставалось разумно большое число пустых мест. Как видно из таблицы 3.1, чем меньше таблица, тем больше среднее время поиска ключа в ней. Хеш-таблицу можно рассматривать как совокупность связанных списков. По мере того, как таблица растет, увеличивается количество списков и, соответственно, среднее число узлов в каждом списке уменьшается. Пусть количество элементов равно n. Если размер таблицы равен 1, то таблица вырождается в один список длины n. Если размер таблицы равен 2 и хеширование идеально, то нам придется иметь дело с двумя списками по n/100 элементов в каждом. Это сильно уменьшает длину списка, в котором нужно искать. Как мы видим в таблице 3.1, имеется значительная свободы в выборе длины таблицы.
размер | время | размер | время | |
---|---|---|---|---|
1 | 869 | 128 | 9 | |
2 | 432 | 256 | 6 | |
4 | 214 | 512 | 4 | |
8 | 106 | 1024 | 4 | |
16 | 54 | 2048 | 3 | |
32 | 28 | 4096 | 3 | |
64 | 15 | 8192 | 3 |
Реализация
В реализации алгоритма на Си операторы typedef T и compGT следует изменить так, чтобы они соответствовали данным, хранимым в массиве. Для работы программы следует также определить hashTableSize и отвести место под hashTable. В хеш-функции hash использован метод деления. Функция insertNode отводит память под новый узел и вставляет его в таблицу. Функция deleteNode удаляет узел и освобождает память, где он располагался. Функция findNode ищет в таблице заданный ключ.
Оставить комментарий
Комментарии

