Справочник функций

Ваш аккаунт

Войти через: 
Забыли пароль?
Регистрация
Информацию о новых материалах можно получать и без регистрации:

Последние темы форума

Показать новые сообщения »

Почтовая рассылка

Подписчиков: 11639
Последний выпуск: 19.06.2015

Алгебраические фракталы.

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоватся терминологией теории этих систем: фазовый портрет, установившийся процесс, аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несолькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рисунок 3 - Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z[i+1] = Z[i] * Z[i] + C,

где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z[i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z[i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z[i] оставалась внутри окружности, можно установить цвет точки C (если Z[i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рисунок 4 - Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).


Предыдущие | Дальше

Оставить комментарий

Комментарий:
можно использовать BB-коды
Максимальная длина комментария - 4000 символов.
 

Комментарии

1.
Аноним
Мне нравитсяМне не нравится
29 мая 2006, 01:39:19
"несолькими устойчивыми состояниями" опечатка
Реклама на сайте | Обмен ссылками | Ссылки | Экспорт (RSS) | Контакты
Добавить статью | Добавить исходник | Добавить хостинг-провайдера | Добавить сайт в каталог